3 research outputs found

    Cold stress and freezing tolerance negatively affect the fitness of Arabidopsis thaliana accessions under field and controlled conditions

    Get PDF
    MAIN CONCLUSION: Higher acclimated freezing tolerance improved winter survival, but reduced reproductive fitness of Arabidopsis thaliana accessions under field and controlled conditions. ABSTRACT: Low temperature is one of the most important abiotic factors influencing plant fitness and geographical distribution. In addition, cold stress is known to influence crop yield and is therefore of great economic importance. Increased freezing tolerance can be acquired by the process of cold acclimation, but this may be associated with a fitness cost. To assess the influence of cold stress on the fitness of plants, long-term field trials over 5 years were performed with six natural accessions of Arabidopsis thaliana ranging from very tolerant to very sensitive to freezing. Fitness parameters, as seed yield and 1000 seed mass, were measured and correlation analyses with temperature and freezing tolerance data performed. The results were compared with fitness parameters from controlled chamber experiments over 3 years with application of cold priming and triggering conditions. Winter survival and seed yield per plant were positively correlated with temperature in field experiments. In addition, winter survival and 1000 seed mass were correlated with the cold-acclimated freezing tolerance of the selected Arabidopsis accessions. The results provide strong evidence for a trade-off between higher freezing tolerance and reproductive fitness in A. thaliana, which might have ecological impacts in the context of global warming. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00425-021-03809-8

    Towards Dynamic Dependable Systems through Evidence-Based Continuous Certification

    Get PDF
    International audienceFuture cyber-physical systems are expected to be dynamic, evolving while already being deployed. Frequent updates of software components are likely to become the norm even for safety-critical systems. In this setting, a full re-certification before each software update might delay important updates that fix previous bugs, or security or safety issues. Here we propose a vision addressing this challenge, namely through the evidence-based continuous supervision and certification of software variants in the field. The idea is to run both old and new variants of component software inside the same system, together with a supervising instance that monitors their behavior. Updated variants are phased into operation after sufficient evidence for correct behavior has been collected. The variants are required to explicate their decisions in a logical language, enabling the supervisor to reason about these decisions and to identify inconsistencies. To resolve contradictory information, the supervisor can run a component analysis to identify potentially faulty components on the basis of previously observed behavior, and can trigger micro-experiments which plan and execute system behavior specifically aimed at reducing uncertainty. We spell out our overall vision, and provide a first formalization of the different components and their interplay. In order to provide efficient supervisor reasoning as well as automatic verification of supervisor properties we introduce SupERLog, a logic specifically designed to this end
    corecore